This gives us something closer to the advantages of archive and
archive-z when using the latter. Concretely we get deduplication
among multiple checkouts, along with the "devino" hash table trick
during commits to avoid checksumming content again.
This is enabled by default.
For similar reasons as metadata, this avoids having the main thread
blocked in fdatasync(), and even better - we can achieve much higher
parallelism if we have multiple threads blocked on fdatasync().
This is where loose content objects are stored as one compressed file,
instead of the two separate ones for regular archive mode. This mode
would be suitable for HTTP servers, beause only one HTTP request is
necessary, and the result would be compressed.
Cleanly separate metadata/content APIs, rather than defaulting to
raw streams. This helps most use cases.
Also, drop support for staging content without knowing the total
length. This complicated the code, and for things like streaming
HTTP, we should be able to figure this out from Content-Length.
They're not a large efficiency win at the moment, because we don't
do any delta compression.
At the moment, they simply served to compress data, but we will change
the archive mode to do that by default.
I run builds on my laptop, but it also crashes about 1/4 of the time
while suspending. It's definitely undesrirable to get e.g. empty
.dirtree objects because they corrupt builds. Concretely, I was
getting empty contents committed for xorg-util-macros.
Now, we used to write out temporary files using g_file_replace() which
does a fsync() during close, but then switched to a more "manual"
g_file_append_to().
We could switch back to g_file_replace(), but the problem is, we don't
want to call fsync() on temporary files in the case where we already
have the object. Attempting to add an object we already have is a
*very* common case.
This is both the old and new code sequence for the case where an
object is already stored:
open(temp, O_WRONLY)
write() write() write()
close()
lstat(objects/3a/9fe332...) = 0
unlink(temp)
In the *new* code, here's the case where an object *isn't* stored:
open(temp, O_WRONLY)
write() write() write()
close()
lstat(objects/3a/9fe332...) = -1
open(temp, O_RDONLY)
fdatasync()
close()
rename(temp, objects/3a/9fe332)
Compare with the *old* code path for when an object isn't stored:
open(temp, O_WRONLY)
write() write() write()
close()
lstat(objects/3a/9fe332...) = -1
link(temp, objects/3a/9fe332)
unlink(temp)
The problem with this is we really need to fdatasync(). Also doing
just rename() instead of the weird link()/unlink() helps us express to
the filesystem that we want atomic semantics. For example, BTRFS has
special handling for rename().
We really don't have a sane story for private files. This is a
defensive step ensuring that with old versions of gnome-ostree,
components that mistakenly have un-world-readable files don't break
pulls.
As the manual page doesn't say, but the in-code kernel documentation
shows, hardlinking for normal users can fail for a variety of
reasons (including very common situations such as non regular file
or non writable file), if the owner of the file does not match
the user linking (e.g. when checking out a shadow repo with a root-
owned master).
If that happens, fail back silently to copying instead of aborting
the whole operation.
https://bugzilla.gnome.org/show_bug.cgi?id=682298
This can be a large performance win in certain circumstances:
* Cold buffer cache (we don't block the whole process)
* Requiring a copy instead of hardlink
The previous fix to just ignore symbolic links for hard linking isn't
really good enough, since it can happen for empty files too.
Since this is an optimization, when we get EMLINK, let's instead just
fall back to copying. This also applies to EXDEV.
Rather than always doing:
1) make temporary link
2) unlink() target
3) rename()
Just try making the link, and only do the second two if the file
already exists. This reduces system call traffic a lot.
By default, when doing a commit, scan all of our loose objects and
build up a (device,inode) -> checksum hash. Then when we're doing a
commit, if we see a file with that (device,inode) pair, we can avoid
checksumming it.
This will allow us to use hard links again for user-mode checkouts,
rather than the hackish link cache. It was pretty silly anyways to
have file objects be stored with just a small metadata header
prepended, but uncompressed.
Either they should be hardlinkable, or compressed (in pack files).
Rather than passing xattr/file_info for all objects, change the API to
assume we're passing the defined object stream for each type. Namely,
for OSTREE_OBJECT_TYPE_FILE, we're now giving the "archive file" data.
This significantly cleans up the code for committing to archive mode
repositories, at the cost of having to (at present) create an
intermediate temporary file when committing to raw repositories.
This will be useful for ostbuild; a user can create their own archive
mode repository which transparently inherits objects from the
root-owned one in /ostree.