First, move deployments to /ostree/deploy. Having them in the
toplevel clutters the filesystem layout too much.
When we deploy a tree like /ostree/deploy/NAME, there is now also a
writable directory /ostree/deploy/NAME-etc. This is mounted as
read-write inside the system.
On an initial install, that directory is copied from
/ostree/deploy/NAME/etc. On subsequent deployments, we find any
changes made in the current deployment's /etc, and apply that set of
changes to the new deployment's /etc.
See https://live.gnome.org/OSTree/EverythingInEtcIsABug
I run builds on my laptop, but it also crashes about 1/4 of the time
while suspending. It's definitely undesrirable to get e.g. empty
.dirtree objects because they corrupt builds. Concretely, I was
getting empty contents committed for xorg-util-macros.
Now, we used to write out temporary files using g_file_replace() which
does a fsync() during close, but then switched to a more "manual"
g_file_append_to().
We could switch back to g_file_replace(), but the problem is, we don't
want to call fsync() on temporary files in the case where we already
have the object. Attempting to add an object we already have is a
*very* common case.
This is both the old and new code sequence for the case where an
object is already stored:
open(temp, O_WRONLY)
write() write() write()
close()
lstat(objects/3a/9fe332...) = 0
unlink(temp)
In the *new* code, here's the case where an object *isn't* stored:
open(temp, O_WRONLY)
write() write() write()
close()
lstat(objects/3a/9fe332...) = -1
open(temp, O_RDONLY)
fdatasync()
close()
rename(temp, objects/3a/9fe332)
Compare with the *old* code path for when an object isn't stored:
open(temp, O_WRONLY)
write() write() write()
close()
lstat(objects/3a/9fe332...) = -1
link(temp, objects/3a/9fe332)
unlink(temp)
The problem with this is we really need to fdatasync(). Also doing
just rename() instead of the weird link()/unlink() helps us express to
the filesystem that we want atomic semantics. For example, BTRFS has
special handling for rename().
We really don't have a sane story for private files. This is a
defensive step ensuring that with old versions of gnome-ostree,
components that mistakenly have un-world-readable files don't break
pulls.
As the manual page doesn't say, but the in-code kernel documentation
shows, hardlinking for normal users can fail for a variety of
reasons (including very common situations such as non regular file
or non writable file), if the owner of the file does not match
the user linking (e.g. when checking out a shadow repo with a root-
owned master).
If that happens, fail back silently to copying instead of aborting
the whole operation.
https://bugzilla.gnome.org/show_bug.cgi?id=682298
This helps make things less confusing when we try to create a file not
owned by our uid, such as running ostree-pull as non-root on a
repository owned by root.
This can be a large performance win in certain circumstances:
* Cold buffer cache (we don't block the whole process)
* Requiring a copy instead of hardlink
The previous fix to just ignore symbolic links for hard linking isn't
really good enough, since it can happen for empty files too.
Since this is an optimization, when we get EMLINK, let's instead just
fall back to copying. This also applies to EXDEV.
Rather than always doing:
1) make temporary link
2) unlink() target
3) rename()
Just try making the link, and only do the second two if the file
already exists. This reduces system call traffic a lot.
By default, when doing a commit, scan all of our loose objects and
build up a (device,inode) -> checksum hash. Then when we're doing a
commit, if we see a file with that (device,inode) pair, we can avoid
checksumming it.
This will allow us to use hard links again for user-mode checkouts,
rather than the hackish link cache. It was pretty silly anyways to
have file objects be stored with just a small metadata header
prepended, but uncompressed.
Either they should be hardlinkable, or compressed (in pack files).
Rather than passing xattr/file_info for all objects, change the API to
assume we're passing the defined object stream for each type. Namely,
for OSTREE_OBJECT_TYPE_FILE, we're now giving the "archive file" data.
This significantly cleans up the code for committing to archive mode
repositories, at the cost of having to (at present) create an
intermediate temporary file when committing to raw repositories.
This will be useful for ostbuild; a user can create their own archive
mode repository which transparently inherits objects from the
root-owned one in /ostree.
This is a convenient way to have a lookaside directory of hard links,
which can greatly speed up checkouts. In the future we probably want
to push this down into the repository.
Having the archived vs not distinction in the object system wasn't
useful in light of pack files. In fact, we should probably move
towards generating a pack file per commit by default.
Don't expose GChecksum in APIs. Add a new stream class which allows
us to pass an input stream somewhere, but gather a checksum as it's
read.
Move some bits of the internals towards binary csums.
Previously we had the "staged" state to ensure we didn't add a commit
object without the associated dirtree, etc. However it's
easier/better to just ensure in the pull command that we have all
referenced objects.
Also change pull to download metadata first. This will allow adding
a progress bar later.
Expose the lower-level functionality in libostree, change checkout
builtin to be a higher level driver. This will allow us to more
easily improve the "checkout" builtin..
Continuing from 16c0cfe9b5, we now have
the problem that we're removing the executable bit, which obviously
breaks things when we chroot in for a build. Fix this by masking over
our bits.
We want to support both "bare" lookups where "foo" can be local, or in
any remote, as well as prefixed ones for a specific remote.
This fixes ostree-pull noticing that nothing has changed.
Before we were creating randomly-named temporary files in repo/tmp
when downloading via pull, but that means if the download process is
interrupted, we have to redownload everything again.
Let's still keep the concept of a "transaction" where files are
stored in the repository as atomically as possible (i.e. we
do a bunch of rename() calls), but now we also have an explicit
"tmp/pending/objects" directory that contains named objects.
This allows us to then skip redownloading things that are pending.
The builder wants the ability to mark a given file as e.g. setuid. To
implement this, the repo now has a callback-based API when importing a
directory to modify or remove items.
The commit tool accepts a "statoverride" file as input which looks like:
+mode /path/to/file
If multiple files have the same hash, we need to ensure we're not
overwriting other tempfiles in the same transaction. Instead
just delete them, since we know they're in the repo.
I'm trying to keep ostree as being closer to just being the versioning
filesystem, so let's split out the triggers into a different binary
(although still namespaced ostree-).
The tar files we're making of artifacts don't include parent
directories. Now we could change the builder to make them, but we can
also just autocreate them on import. Mode 0755 with no xattrs seems
OK here.
It's pretty trivial to map a previously existing commit tree into a
mutable tree too. While we're here change the command line arguments
for commit so that we can now properly overlay any combination of
directory, commit, or tarfile.
Rather than offering high level "commit directory", instead perform
operations on a mtree. Commits are treated more like regular objects.
Change the commit builtin to drive this all at a lower level.
The tar import code forced the resuscitation of a hackish "FileTree"
data type for representing an in-memory tree. Split this out
into an OstreeMutableTree class for future use by any other in-memory
tree construction.
ostbuild will generate two artifacts: foo-runtime.tar.gz and
foo-devel.tar.gz in the general case. When committing to the devel
tree, it'd be lame (i.e. slower and not atomic) to have to commit
twice.
This will allow us to have hardlink checkouts of archives. A key use
case here is an archive repo of an OS (with root-owned files etc.)
where we want to do builds in a user tree.
A positive side effect of doing things this way is that now the SHA256
checksums for a given file should be identical regardless of whether
it's stored in an archive or bare repository.
It's too confusing that we call the mode "archive" but the actual
files ".packfile". Also, git already has a "packfile" that serves a
totally different purpose.
Note this change makes it so we no longer call link() from an import
filesystem tree to the repository. This is a Good Thing really; it
makes local FS commits slower, but also less prone to corruption.
We really want the ability to take a .tar.gz and directly import
it into a repository, without creating a temporary filesystem tree.
First, doing it this way is significantly faster. Also, this allows
us to handle importing tar files with e.g. uid 0 files into packed
repositories as non-root, which is very useful for tests and builds.
This moves us closer to consistently passing around a triple of:
(GFileInfo *info, GVariant *xattrs, GInputStream *content)
Which will help the libarchive work.
We never actually dropped into the bits to write metadata as packfiles,
because such a thing doesn't exist.
Also add a GInputStream-based API for writing packfiles.
The default is always ignore_exists. Also port the internals here
to use more GIO code, and stop using *at syscall variants since they're
only useful if used 100%.
This commit originally was to port ostree_stat_and_checksum_file() to
GFile*, but I noticed that the checksum code was reading data in host
endianness. Fix that while we're here.
This invalidates all existing repositories.
This necessitated a large set of changes.
We now support an "archive" mode for repositories. In this mode,
files are stored "packed" rather than hard linked. This allows one to
e.g. store an OSTree repository with root-owned files as non-root. It
is also used as the basis for serving repositories via HTTP.
While doing this I realized that GVariant is endianness-dependent; I
decided to just store all data in big endian.