Add Nelder Mead.

This commit is contained in:
James Pace 2022-07-09 12:19:47 +00:00
parent abe406d7aa
commit 7af3714493
7 changed files with 304 additions and 17 deletions

View File

@ -8,17 +8,32 @@ find_package(ament_cmake REQUIRED)
find_package(ament_cmake_ros REQUIRED) find_package(ament_cmake_ros REQUIRED)
find_package(rclcpp REQUIRED) find_package(rclcpp REQUIRED)
add_library(cost_function
src/CostFunction.cpp)
target_compile_features(cost_function PUBLIC cxx_std_17)
target_include_directories(cost_function PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>)
add_library(simplex_solver add_library(simplex_solver
src/CostFunction.cpp
src/SimplexSolver.cpp) src/SimplexSolver.cpp)
target_compile_features(simplex_solver PUBLIC cxx_std_17) # Require C++17 target_link_libraries(simplex_solver cost_function)
target_compile_features(simplex_solver PUBLIC cxx_std_17)
target_include_directories(simplex_solver PUBLIC target_include_directories(simplex_solver PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>) $<INSTALL_INTERFACE:include>)
add_library(nelder_mead
src/NelderMead.cpp)
target_link_libraries(nelder_mead cost_function)
target_compile_features(nelder_mead PUBLIC cxx_std_17)
target_include_directories(nelder_mead PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>)
add_executable(main src/main.cpp) add_executable(main src/main.cpp)
target_compile_features(main PUBLIC cxx_std_17) # Require C++17 target_compile_features(main PUBLIC cxx_std_17)
target_link_libraries(main simplex_solver) target_link_libraries(main cost_function simplex_solver nelder_mead)
target_include_directories(main PUBLIC target_include_directories(main PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>) $<INSTALL_INTERFACE:include>)
@ -30,11 +45,13 @@ install(
) )
install( install(
TARGETS TARGETS
cost_function
simplex_solver simplex_solver
nelder_mead
EXPORT export_${PROJECT_NAME} EXPORT export_${PROJECT_NAME}
ARCHIVE DESTINATION lib/${PROJECT_NAME} ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib/${PROJECT_NAME} LIBRARY DESTINATION lib
RUNTIME DESTINATION bin/${PROJECT_NAME} RUNTIME DESTINATION bin
) )
install( install(
TARGETS TARGETS
@ -45,7 +62,9 @@ ament_export_include_directories(
include include
) )
ament_export_libraries( ament_export_libraries(
optimizer cost_function
simplex_solver
nelder_mead
) )
ament_export_targets( ament_export_targets(
export_${PROJECT_NAME} export_${PROJECT_NAME}

View File

@ -0,0 +1,44 @@
// Copyright 2022 James Pace
// All Rights Reserved.
//
// For a license to this software contact
// James Pace at jpace121@gmail.com.
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#ifndef J7S__NELDERMEAD_HPP_
#define J7S__NELDERMEAD_HPP_
#include "j7s-optimization/CostFunction.hpp"
#include "j7s-optimization/common.hpp"
#include <vector>
namespace j7s
{
class NelderMead
{
public:
NelderMead(const CostFunction & costFunction, const std::vector<double> initSimplex);
IterationState update();
Coordinate bestCoord() const;
private:
const CostFunction m_costFunction;
std::vector<Coordinate> m_currentSimplex;
// Helper functions.
double newPoint() const;
std::vector<Coordinate> contract() const;
double calcVolume() const;
double findCentroid() const;
double secondNewPoint(const Coordinate& newPoint) const;
};
} // namespace j7s
#endif // J7S__NELDERMEAD_HPP_

View File

@ -32,9 +32,9 @@ private:
std::vector<Coordinate> m_currentSimplex; std::vector<Coordinate> m_currentSimplex;
// Helper functions. // Helper functions.
double newPoint(); double newPoint() const;
std::vector<Coordinate> contract(); std::vector<Coordinate> contract() const;
double calcVolume(); double calcVolume() const;
}; };
} // namespace j7s } // namespace j7s

View File

@ -34,6 +34,11 @@ struct Coordinate
// Sort by cost. // Sort by cost.
bool operator<(const Coordinate & other) const { return (cost < other.cost); } bool operator<(const Coordinate & other) const { return (cost < other.cost); }
bool operator<=(const Coordinate & other) const { return (cost <= other.cost); }
bool operator>(const Coordinate & other) const { return (cost > other.cost); }
bool operator>=(const Coordinate & other) const { return (cost >= other.cost); }
bool operator==(const Coordinate & other) const { return (cost == other.cost); }
bool operator!=(const Coordinate & other) const { return (cost != other.cost); }
}; };
} // namespace j7s } // namespace j7s

182
src/NelderMead.cpp Normal file
View File

@ -0,0 +1,182 @@
// Copyright 2022 James Pace
// All Rights Reserved.
//
// For a license to this software contact
// James Pace at jpace121@gmail.com.
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#include "j7s-optimization/NelderMead.hpp"
#include <algorithm>
#include <cmath>
#include <stdexcept>
namespace j7s
{
NelderMead::NelderMead(
const CostFunction & costFunction, const std::vector<double> initSimplex) :
m_costFunction{costFunction}
{
m_currentSimplex.reserve(initSimplex.size());
for (const auto val : initSimplex)
{
m_currentSimplex.emplace_back(val, m_costFunction.eval(val));
}
std::sort(m_currentSimplex.begin(), m_currentSimplex.end());
}
Coordinate NelderMead::bestCoord() const
{
return m_currentSimplex.front();
}
double NelderMead::newPoint() const
{
if (m_currentSimplex.size() == 0)
{
throw std::runtime_error("Simplex can't be missing.");
}
// Calculate sum.
double biggest = m_currentSimplex.back().input;
// Calculate volume.
double sum = 0.0;
// All but the biggest, (would be adding 0...)
for (unsigned int index = 0; index < m_currentSimplex.size() - 1; index++)
{
const double diff = m_currentSimplex[index].input - biggest;
sum += diff;
}
const double newPoint = sum * (2.0 / m_currentSimplex.size());
return newPoint;
}
double NelderMead::findCentroid() const
{
double sum = 0.0;
for (unsigned int index = 0; index < m_currentSimplex.size() - 1; index++)
{
sum += m_currentSimplex[index].input;
}
const double newPoint = sum * (1.0 / m_currentSimplex.size());
return newPoint;
}
double NelderMead::secondNewPoint(const Coordinate& newPoint) const
{
// FxN in paper.
const auto biggest = m_currentSimplex.back();
// Fx0 in paper.
const auto smallest = m_currentSimplex.front();
// FxN-1 in paper.
// TODO: Assuming simplex size here.
const auto secondBiggest = *(m_currentSimplex.end() - 2);
const double centroid = findCentroid();
if(newPoint < smallest)
{
return 2.0*newPoint.input - centroid;
}
else if(smallest <= newPoint and newPoint < secondBiggest)
{
return 0.5*(centroid + newPoint.input);
}
else if(secondBiggest <= newPoint)
{
return 0.5*(biggest.input + centroid);
}
else
{
// Shouldn't be able to get here?
throw std::logic_error("Shouldn't be able to get here.");
}
}
std::vector<Coordinate> NelderMead::contract() const
{
const auto smallest = m_currentSimplex.front();
std::vector<Coordinate> newVector;
newVector.reserve(m_currentSimplex.size());
newVector.emplace_back(smallest);
// TODO: Really check size before I get here...
for (auto it = m_currentSimplex.begin() + 1; it != m_currentSimplex.end(); it++)
{
const auto oldInput = it->input;
const auto newInput = 0.5 * (oldInput + smallest.input);
const auto newCost = m_costFunction.eval(newInput);
newVector.emplace_back(newInput, newCost);
}
std::sort(newVector.begin(), newVector.end());
return newVector;
}
double NelderMead::calcVolume() const
{
// TODO: For reals do something like:
// https://math.stackexchange.com/questions/337197/finding-the-volume-of-a-tetrahedron-by-given-vertices
// For now:
// Sort by input and find the difference squared between the first and last.
const auto inputLess = [](const Coordinate & first, const Coordinate & second)
{ return first.input < second.input; };
// Copy the vector so we don't sort the original.
std::vector<Coordinate> simplexCopy = m_currentSimplex;
std::sort(simplexCopy.begin(), simplexCopy.end(), inputLess);
const auto smallest = simplexCopy.front();
const auto biggest = simplexCopy.back();
return std::pow(biggest.input - smallest.input, 2.0);
}
IterationState NelderMead::update()
{
if (m_currentSimplex.size() < 3)
{
throw std::runtime_error("Simplex can't be a line.");
}
// Check for convergence and potentially early return.
// TODO: Make configurable.
const auto volume = calcVolume();
if (volume < 1e-4)
{
return IterationState::CONVERGED;
}
// Do update.
Coordinate potential;
potential.input = newPoint();
potential.cost = m_costFunction.eval(potential.input);
Coordinate secondPotential;
secondPotential.input = secondNewPoint(potential);
secondPotential.cost = m_costFunction.eval(secondPotential.input);
const auto minPotential = std::min(potential, secondPotential);
const auto secondBiggest = *(m_currentSimplex.end() - 2);
if (minPotential.cost < secondBiggest.cost)
{
// Replace the last simplex value with the better one.
*(m_currentSimplex.end() - 1) = minPotential;
std::sort(m_currentSimplex.begin(), m_currentSimplex.end());
}
else
{
// Do a contraction.
m_currentSimplex = contract();
}
return IterationState::OK;
}
} // namespace j7s

View File

@ -33,7 +33,7 @@ Coordinate SimplexSolver::bestCoord() const
return m_currentSimplex.front(); return m_currentSimplex.front();
} }
double SimplexSolver::newPoint() double SimplexSolver::newPoint() const
{ {
if (m_currentSimplex.size() == 0) if (m_currentSimplex.size() == 0)
{ {
@ -56,7 +56,7 @@ double SimplexSolver::newPoint()
return newPoint; return newPoint;
} }
std::vector<Coordinate> SimplexSolver::contract() std::vector<Coordinate> SimplexSolver::contract() const
{ {
const auto smallest = m_currentSimplex.front(); const auto smallest = m_currentSimplex.front();
@ -77,7 +77,7 @@ std::vector<Coordinate> SimplexSolver::contract()
return newVector; return newVector;
} }
double SimplexSolver::calcVolume() double SimplexSolver::calcVolume() const
{ {
// TODO: For reals do something like: // TODO: For reals do something like:
// https://math.stackexchange.com/questions/337197/finding-the-volume-of-a-tetrahedron-by-given-vertices // https://math.stackexchange.com/questions/337197/finding-the-volume-of-a-tetrahedron-by-given-vertices

View File

@ -11,12 +11,24 @@
#include "j7s-optimization/CostFunction.hpp" #include "j7s-optimization/CostFunction.hpp"
#include "j7s-optimization/SimplexSolver.hpp" #include "j7s-optimization/SimplexSolver.hpp"
#include "j7s-optimization/NelderMead.hpp"
#include "j7s-optimization/common.hpp" #include "j7s-optimization/common.hpp"
void runSimpleSimplex(const j7s::CostFunction& cost, const std::vector<double>& init_simplex);
void runNelderMead(const j7s::CostFunction& cost, const std::vector<double>& init_simplex);
int main(int, char **) int main(int, char **)
{ {
const j7s::CostFunction cost(2.0, 3.0, 4.0); const j7s::CostFunction cost(2.0, 3.0, 4.0);
const std::vector<double> init_simplex = {-10, 0, 10}; const std::vector<double> init_simplex = {-10, 0, 10};
runSimpleSimplex(cost, init_simplex);
runNelderMead(cost, init_simplex);
return 0;
}
void runSimpleSimplex(const j7s::CostFunction& cost, const std::vector<double>& init_simplex)
{
j7s::SimplexSolver solver(cost, init_simplex); j7s::SimplexSolver solver(cost, init_simplex);
j7s::IterationState state = j7s::IterationState::OK; j7s::IterationState state = j7s::IterationState::OK;
@ -31,13 +43,38 @@ int main(int, char **)
if (state == j7s::IterationState::CONVERGED) if (state == j7s::IterationState::CONVERGED)
{ {
const auto best = solver.bestCoord(); const auto best = solver.bestCoord();
std::cout << "Converged! Best Input: " << best.input << " Cost: " << best.cost << std::endl; std::cout << "SimpleSiplex Converged! Best Input: " << best.input << " Cost: " << best.cost << std::endl;
std::cout << "Actual Best: " << cost.actualBest() std::cout << "Actual Best: " << cost.actualBest()
<< " Cost: " << cost.eval(cost.actualBest()) << std::endl; << " Cost: " << cost.eval(cost.actualBest()) << std::endl;
} }
else else
{ {
std::cout << "Did not converge." << std::endl; std::cout << "SimpleSimplex did not converge." << std::endl;
}
}
void runNelderMead(const j7s::CostFunction& cost, const std::vector<double>& init_simplex)
{
j7s::NelderMead solver(cost, init_simplex);
j7s::IterationState state = j7s::IterationState::OK;
for (int cnt = 0; cnt < 1000; cnt++)
{
state = solver.update();
if (state == j7s::IterationState::CONVERGED)
{
break;
}
}
if (state == j7s::IterationState::CONVERGED)
{
const auto best = solver.bestCoord();
std::cout << "Nelder Mead Converged! Best Input: " << best.input << " Cost: " << best.cost << std::endl;
std::cout << "Actual Best: " << cost.actualBest()
<< " Cost: " << cost.eval(cost.actualBest()) << std::endl;
}
else
{
std::cout << "Nelder Mead did not converge." << std::endl;
} }
return 0;
} }