meta-st-stm32mp/recipes-kernel/linux/linux-stm32mp/5.15/5.15.67/0006-v5.15-stm32mp-r2-DMA.p...

2098 lines
66 KiB
Diff

From 62911b17f33f57875c1b18ed211d5fa0f731ad42 Mon Sep 17 00:00:00 2001
From: Romuald JEANNE <romuald.jeanne@st.com>
Date: Thu, 3 Nov 2022 15:26:34 +0100
Subject: [PATCH 06/22] v5.15-stm32mp-r2 DMA
Signed-off-by: Romuald JEANNE <romuald.jeanne@st.com>
---
.../devicetree/bindings/dma/st,stm32-dma.yaml | 47 +
.../bindings/dma/st,stm32-mdma.yaml | 12 +-
drivers/dma/stm32-dma.c | 1169 +++++++++++++++--
drivers/dma/stm32-dmamux.c | 2 +-
drivers/dma/stm32-mdma.c | 147 ++-
5 files changed, 1240 insertions(+), 137 deletions(-)
diff --git a/Documentation/devicetree/bindings/dma/st,stm32-dma.yaml b/Documentation/devicetree/bindings/dma/st,stm32-dma.yaml
index 4bf676fd25dc..99351fe0fa17 100644
--- a/Documentation/devicetree/bindings/dma/st,stm32-dma.yaml
+++ b/Documentation/devicetree/bindings/dma/st,stm32-dma.yaml
@@ -47,6 +47,14 @@ description: |
not wait for the de-assertion of the REQuest, ACK is only managed
by transfer completion. This must only be used on channels
managing transfers for STM32 USART/UART.
+ -bit 30-29: indicated SRAM Buffer size in (2^order)*PAGE_SIZE.
+ Order is given by those 2 bits starting at 0.
+ Valid only whether Intermediate M2M transfer is set.
+ For cyclic, whether Intermediate M2M transfer is chosen, any value can be set:
+ SRAM buffer size will rely on period size and not on this DT value.
+ -bit 31: Intermediate M2M transfer from/to DDR to/from SRAM throughout MDMA
+ 0: MDMA not used to generate an intermediate M2M transfer
+ 1: MDMA used to generate an intermediate M2M transfer.
maintainers:
@@ -82,6 +90,35 @@ properties:
description: if defined, it indicates that the controller
supports memory-to-memory transfer
+ dmas:
+ description: A list of eight dma specifiers, one for each entry in dma-names.
+ Refer to stm32-mdma.yaml for more details.
+ items:
+ - description: DMA channel 0 connected to the MDMA channel specified
+ - description: DMA channel 1 connected to the MDMA channel specified
+ - description: DMA channel 2 connected to the MDMA channel specified
+ - description: DMA channel 3 connected to the MDMA channel specified
+ - description: DMA channel 4 connected to the MDMA channel specified
+ - description: DMA channel 5 connected to the MDMA channel specified
+ - description: DMA channel 6 connected to the MDMA channel specified
+ - description: DMA channel 7 connected to the MDMA channel specified
+
+ dma-names:
+ description: Represents each STM32 DMA channel connected to a STM32 MDMA one.
+ items:
+ - const: ch0
+ - const: ch1
+ - const: ch2
+ - const: ch3
+ - const: ch4
+ - const: ch5
+ - const: ch6
+ - const: ch7
+
+ memory-region:
+ description: Phandle to a node describing memory to be used for M2M intermediate transfer
+ between DMA and MDMA.
+
required:
- compatible
- reg
@@ -111,6 +148,16 @@ examples:
st,mem2mem;
resets = <&rcc 150>;
dma-requests = <8>;
+ dmas = <&mdma1 8 0x3 0x1200000a 0x40026408 0x00000020 1>,
+ <&mdma1 9 0x3 0x1200000a 0x40026408 0x00000800 1>,
+ <&mdma1 10 0x3 0x1200000a 0x40026408 0x00200000 1>,
+ <&mdma1 11 0x3 0x1200000a 0x40026408 0x08000000 1>,
+ <&mdma1 12 0x3 0x1200000a 0x4002640C 0x00000020 1>,
+ <&mdma1 13 0x3 0x1200000a 0x4002640C 0x00000800 1>,
+ <&mdma1 14 0x3 0x1200000a 0x4002640C 0x00200000 1>,
+ <&mdma1 15 0x3 0x1200000a 0x4002640C 0x08000000 1>;
+ dma-names = "ch0", "ch1", "ch2", "ch3", "ch4", "ch5", "ch6", "ch7";
+ memory-region = <&sram_dmapool>;
};
...
diff --git a/Documentation/devicetree/bindings/dma/st,stm32-mdma.yaml b/Documentation/devicetree/bindings/dma/st,stm32-mdma.yaml
index c30be840be1c..c4bb58014374 100644
--- a/Documentation/devicetree/bindings/dma/st,stm32-mdma.yaml
+++ b/Documentation/devicetree/bindings/dma/st,stm32-mdma.yaml
@@ -10,8 +10,8 @@ description: |
The STM32 MDMA is a general-purpose direct memory access controller capable of
supporting 64 independent DMA channels with 256 HW requests.
DMA clients connected to the STM32 MDMA controller must use the format
- described in the dma.txt file, using a five-cell specifier for each channel:
- a phandle to the MDMA controller plus the following five integer cells:
+ described in the dma.txt file, using a six-cell specifier for each channel:
+ a phandle to the MDMA controller plus the following six integer cells:
1. The request line number
2. The priority level
0x0: Low
@@ -48,6 +48,10 @@ description: |
if no HW ack signal is used by the MDMA client
5. A 32bit mask specifying the value to be written to acknowledge the request
if no HW ack signal is used by the MDMA client
+ 6. A bitfield value specifying if the MDMA client wants to generate M2M transfer
+ with HW trigger (1) or not (0). This bitfield should be only enabled for
+ M2M transfer triggered by STM32 DMA client. The memory devices involved in this
+ kind of transfer are SRAM and DDR.
maintainers:
- Amelie Delaunay <amelie.delaunay@st.com>
@@ -57,7 +61,7 @@ allOf:
properties:
"#dma-cells":
- const: 5
+ const: 6
compatible:
const: st,stm32h7-mdma
@@ -97,7 +101,7 @@ examples:
interrupts = <122>;
clocks = <&timer_clk>;
resets = <&rcc 992>;
- #dma-cells = <5>;
+ #dma-cells = <6>;
dma-channels = <16>;
dma-requests = <32>;
st,ahb-addr-masks = <0x20000000>, <0x00000000>;
diff --git a/drivers/dma/stm32-dma.c b/drivers/dma/stm32-dma.c
index 7dfc743ac433..7c6078c6c3bf 100644
--- a/drivers/dma/stm32-dma.c
+++ b/drivers/dma/stm32-dma.c
@@ -14,12 +14,14 @@
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
+#include <linux/genalloc.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
+#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
@@ -121,6 +123,7 @@
#define STM32_DMA_FIFO_THRESHOLD_NONE 0x04
#define STM32_DMA_MAX_DATA_ITEMS 0xffff
+#define STM32_DMA_SRAM_GRANULARITY PAGE_SIZE
/*
* Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
* gather at boundary. Thus it's safer to round down this value on FIFO
@@ -142,6 +145,10 @@
#define STM32_DMA_DIRECT_MODE_GET(n) (((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
#define STM32_DMA_ALT_ACK_MODE_MASK BIT(4)
#define STM32_DMA_ALT_ACK_MODE_GET(n) (((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
+#define STM32_DMA_MDMA_CHAIN_FTR_MASK BIT(31)
+#define STM32_DMA_MDMA_CHAIN_FTR_GET(n) (((n) & STM32_DMA_MDMA_CHAIN_FTR_MASK) >> 31)
+#define STM32_DMA_MDMA_SRAM_SIZE_MASK GENMASK(30, 29)
+#define STM32_DMA_MDMA_SRAM_SIZE_GET(n) (((n) & STM32_DMA_MDMA_SRAM_SIZE_MASK) >> 29)
enum stm32_dma_width {
STM32_DMA_BYTE,
@@ -183,15 +190,31 @@ struct stm32_dma_chan_reg {
u32 dma_sfcr;
};
+struct stm32_dma_mdma_desc {
+ struct sg_table sgt;
+ struct dma_async_tx_descriptor *desc;
+};
+
+struct stm32_dma_mdma {
+ struct dma_chan *chan;
+ enum dma_transfer_direction dir;
+ dma_addr_t sram_buf;
+ u32 sram_period;
+};
+
struct stm32_dma_sg_req {
- u32 len;
+ struct scatterlist stm32_sgl_req;
struct stm32_dma_chan_reg chan_reg;
+ struct stm32_dma_mdma_desc m_desc;
};
struct stm32_dma_desc {
struct virt_dma_desc vdesc;
bool cyclic;
u32 num_sgs;
+ dma_addr_t dma_buf;
+ void *dma_buf_cpu;
+ u32 dma_buf_size;
struct stm32_dma_sg_req sg_req[];
};
@@ -208,6 +231,13 @@ struct stm32_dma_chan {
u32 threshold;
u32 mem_burst;
u32 mem_width;
+ enum dma_status status;
+ struct stm32_dma_mdma mchan;
+ u32 use_mdma;
+ u32 sram_size;
+ u32 residue_after_drain;
+ struct workqueue_struct *mdma_wq;
+ struct work_struct mdma_work;
};
struct stm32_dma_device {
@@ -216,6 +246,7 @@ struct stm32_dma_device {
struct clk *clk;
bool mem2mem;
struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
+ struct gen_pool *sram_pool;
};
static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
@@ -266,7 +297,7 @@ static int stm32_dma_get_width(struct stm32_dma_chan *chan,
}
static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
- dma_addr_t buf_addr,
+ u64 buf_addr,
u32 threshold)
{
enum dma_slave_buswidth max_width;
@@ -380,6 +411,16 @@ static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
}
}
+static void stm32_dma_slave_caps(struct dma_chan *c, struct dma_slave_caps *caps)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+
+ if (chan->use_mdma)
+ caps->max_sg_burst = 0; /* unlimited */
+ else
+ caps->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
+}
+
static int stm32_dma_slave_config(struct dma_chan *c,
struct dma_slave_config *config)
{
@@ -485,17 +526,25 @@ static void stm32_dma_stop(struct stm32_dma_chan *chan)
}
chan->busy = false;
+ chan->status = DMA_COMPLETE;
}
static int stm32_dma_terminate_all(struct dma_chan *c)
{
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_mdma *mchan = &chan->mchan;
unsigned long flags;
LIST_HEAD(head);
- spin_lock_irqsave(&chan->vchan.lock, flags);
+ if (chan->use_mdma) {
+ spin_lock_irqsave_nested(&chan->vchan.lock, flags, SINGLE_DEPTH_NESTING);
+ dmaengine_terminate_async(mchan->chan);
+ } else {
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+ }
if (chan->desc) {
+ dma_cookie_complete(&chan->desc->vdesc.tx);
vchan_terminate_vdesc(&chan->desc->vdesc);
if (chan->busy)
stm32_dma_stop(chan);
@@ -509,9 +558,102 @@ static int stm32_dma_terminate_all(struct dma_chan *c)
return 0;
}
+static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
+{
+ u32 dma_scr, width, ndtr;
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
+ width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
+ ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
+
+ return ndtr << width;
+}
+
+static int stm32_dma_mdma_drain(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_mdma *mchan = &chan->mchan;
+ struct stm32_dma_sg_req *sg_req;
+ struct dma_device *ddev = mchan->chan->device;
+ struct dma_async_tx_descriptor *desc = NULL;
+ enum dma_status status;
+ dma_addr_t src_buf, dst_buf;
+ u32 mdma_residue, mdma_wrote, dma_to_write, len;
+ struct dma_tx_state state;
+ int ret;
+ unsigned long flags;
+
+ flush_workqueue(chan->mdma_wq);
+
+ /* DMA/MDMA chain: drain remaining data in SRAM */
+
+ /* Get the residue on MDMA side */
+ status = dmaengine_tx_status(mchan->chan, mchan->chan->cookie, &state);
+ if (status == DMA_COMPLETE)
+ return status;
+
+ mdma_residue = state.residue;
+ sg_req = &chan->desc->sg_req[chan->next_sg - 1];
+ len = sg_dma_len(&sg_req->stm32_sgl_req);
+
+ /*
+ * Total = mdma blocks * sram_period + rest (< sram_period)
+ * so mdma blocks * sram_period = len - mdma residue - rest
+ */
+ mdma_wrote = len - mdma_residue - (len % mchan->sram_period);
+
+ /* Remaining data stuck in SRAM */
+ dma_to_write = mchan->sram_period - stm32_dma_get_remaining_bytes(chan);
+ if (dma_to_write > 0) {
+ spin_lock_irqsave_nested(&chan->vchan.lock, flags, SINGLE_DEPTH_NESTING);
+
+ /* Terminate current MDMA to initiate a new one */
+ dmaengine_terminate_async(mchan->chan);
+
+ /* Stop DMA current operation */
+ stm32_dma_disable_chan(chan);
+
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+
+ /* Double buffer management */
+ src_buf = mchan->sram_buf +
+ ((mdma_wrote / mchan->sram_period) & 0x1) * mchan->sram_period;
+ dst_buf = sg_dma_address(&sg_req->stm32_sgl_req) + mdma_wrote;
+
+ desc = ddev->device_prep_dma_memcpy(mchan->chan, dst_buf, src_buf, dma_to_write,
+ DMA_PREP_INTERRUPT);
+ if (!desc)
+ return -EINVAL;
+
+ ret = dma_submit_error(dmaengine_submit(desc));
+ if (ret < 0)
+ return ret;
+
+ status = dma_wait_for_async_tx(desc);
+ if (status != DMA_COMPLETE) {
+ dev_err(chan2dev(chan), "%s dma_wait_for_async_tx error\n", __func__);
+ dmaengine_terminate_async(mchan->chan);
+ return -EBUSY;
+ }
+
+ /* We need to store residue for tx_status() */
+ chan->residue_after_drain = len - (mdma_wrote + dma_to_write);
+ }
+
+ return 0;
+}
+
static void stm32_dma_synchronize(struct dma_chan *c)
{
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_mdma *mchan = &chan->mchan;
+
+ if (chan->desc && chan->use_mdma && mchan->dir == DMA_DEV_TO_MEM)
+ if (stm32_dma_mdma_drain(chan))
+ dev_err(chan2dev(chan), "%s: can't drain DMA\n", __func__);
+
+ if (chan->use_mdma)
+ dmaengine_synchronize(mchan->chan);
vchan_synchronize(&chan->vchan);
}
@@ -534,6 +676,231 @@ static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
}
+static int stm32_dma_dummy_memcpy_xfer(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct dma_device *ddev = &dmadev->ddev;
+ struct stm32_dma_chan_reg reg;
+ u8 src_buf, dst_buf;
+ dma_addr_t dma_src_buf, dma_dst_buf;
+ u32 ndtr, status;
+ int len, ret;
+
+ ret = 0;
+ src_buf = 0;
+ len = 1;
+
+ dma_src_buf = dma_map_single(ddev->dev, &src_buf, len, DMA_TO_DEVICE);
+ ret = dma_mapping_error(ddev->dev, dma_src_buf);
+ if (ret < 0) {
+ dev_err(chan2dev(chan), "Source buffer map failed\n");
+ return ret;
+ }
+
+ dma_dst_buf = dma_map_single(ddev->dev, &dst_buf, len, DMA_FROM_DEVICE);
+ ret = dma_mapping_error(ddev->dev, dma_dst_buf);
+ if (ret < 0) {
+ dev_err(chan2dev(chan), "Destination buffer map failed\n");
+ dma_unmap_single(ddev->dev, dma_src_buf, len, DMA_TO_DEVICE);
+ return ret;
+ }
+
+ reg.dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
+ STM32_DMA_SCR_PBURST(STM32_DMA_BURST_SINGLE) |
+ STM32_DMA_SCR_MBURST(STM32_DMA_BURST_SINGLE) |
+ STM32_DMA_SCR_MINC | STM32_DMA_SCR_PINC |
+ STM32_DMA_SCR_TEIE;
+ reg.dma_spar = dma_src_buf;
+ reg.dma_sm0ar = dma_dst_buf;
+ reg.dma_sfcr = STM32_DMA_SFCR_MASK | STM32_DMA_SFCR_FTH(STM32_DMA_FIFO_THRESHOLD_FULL);
+ reg.dma_sm1ar = dma_dst_buf;
+ reg.dma_sndtr = 1;
+
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg.dma_scr);
+ stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg.dma_spar);
+ stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg.dma_sm0ar);
+ stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg.dma_sfcr);
+ stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg.dma_sm1ar);
+ stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg.dma_sndtr);
+
+ /* Clear interrupt status if it is there */
+ status = stm32_dma_irq_status(chan);
+ if (status)
+ stm32_dma_irq_clear(chan, status);
+
+ stm32_dma_dump_reg(chan);
+
+ chan->busy = true;
+ chan->status = DMA_IN_PROGRESS;
+ /* Start DMA */
+ reg.dma_scr |= STM32_DMA_SCR_EN;
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg.dma_scr);
+
+ ret = readl_relaxed_poll_timeout_atomic(dmadev->base + STM32_DMA_SNDTR(chan->id),
+ ndtr, !ndtr, 10, 1000);
+ if (ret) {
+ dev_err(chan2dev(chan), "%s: timeout!\n", __func__);
+ ret = -EBUSY;
+ }
+
+ chan->busy = false;
+ chan->status = DMA_COMPLETE;
+
+ ret = stm32_dma_disable_chan(chan);
+ status = stm32_dma_irq_status(chan);
+ if (status)
+ stm32_dma_irq_clear(chan, status);
+
+ dma_unmap_single(ddev->dev, dma_src_buf, len, DMA_TO_DEVICE);
+ dma_unmap_single(ddev->dev, dma_dst_buf, len, DMA_FROM_DEVICE);
+
+ return ret;
+}
+
+static int stm32_dma_mdma_flush_remaining(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct stm32_dma_mdma *mchan = &chan->mchan;
+ struct stm32_dma_sg_req *sg_req;
+ struct dma_device *ddev = mchan->chan->device;
+ struct dma_async_tx_descriptor *desc = NULL;
+ enum dma_status status;
+ dma_addr_t src_buf, dst_buf;
+ u32 residue, remain, len, dma_scr;
+ int ret;
+
+ residue = stm32_dma_get_remaining_bytes(chan);
+ if (!residue)
+ return 0;
+
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
+ if (!(dma_scr & STM32_DMA_SCR_EN))
+ return -EPERM;
+
+ sg_req = &chan->desc->sg_req[chan->next_sg - 1];
+ len = sg_dma_len(&sg_req->stm32_sgl_req);
+ remain = len % mchan->sram_period;
+
+ if (len > mchan->sram_period && ((len % mchan->sram_period) != 0)) {
+ unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
+
+ while (residue > 0 && residue > (mchan->sram_period - remain)) {
+ if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
+ dev_err(chan2dev(chan),
+ "%s timeout pending last %d bytes\n", __func__, residue);
+ return -EBUSY;
+ }
+ cpu_relax();
+ residue = stm32_dma_get_remaining_bytes(chan);
+ }
+ stm32_dma_disable_chan(chan);
+
+ src_buf = mchan->sram_buf + ((len / mchan->sram_period) & 0x1) * mchan->sram_period;
+ dst_buf = sg_dma_address(&sg_req->stm32_sgl_req) + len - (len % mchan->sram_period);
+
+ desc = ddev->device_prep_dma_memcpy(mchan->chan, dst_buf, src_buf,
+ len % mchan->sram_period, DMA_PREP_INTERRUPT);
+
+ if (!desc)
+ return -EINVAL;
+
+ ret = dma_submit_error(dmaengine_submit(desc));
+ if (ret < 0)
+ return ret;
+
+ status = dma_wait_for_async_tx(desc);
+ if (status != DMA_COMPLETE) {
+ dmaengine_terminate_async(mchan->chan);
+ return -EBUSY;
+ }
+ }
+
+ return 0;
+}
+
+static void stm32_dma_start_transfer(struct stm32_dma_chan *chan);
+
+static void stm32_mdma_chan_complete_worker(struct work_struct *work)
+{
+ struct stm32_dma_chan *chan = container_of(work, struct stm32_dma_chan, mdma_work);
+ unsigned long flags;
+ int ret;
+
+ chan->busy = false;
+ chan->status = DMA_COMPLETE;
+ ret = stm32_dma_mdma_flush_remaining(chan);
+ if (ret) {
+ dev_err(chan2dev(chan), "Can't flush DMA: %d\n", ret);
+ return;
+ }
+
+ spin_lock_irqsave_nested(&chan->vchan.lock, flags, SINGLE_DEPTH_NESTING);
+
+ if (chan->next_sg == chan->desc->num_sgs) {
+ vchan_cookie_complete(&chan->desc->vdesc);
+ chan->desc = NULL;
+ }
+
+ stm32_dma_start_transfer(chan);
+
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+}
+
+static void stm32_mdma_chan_complete(void *param, const struct dmaengine_result *result)
+{
+ struct stm32_dma_chan *chan = param;
+
+ if (result->result == DMA_TRANS_NOERROR) {
+ if (!queue_work(chan->mdma_wq, &chan->mdma_work)) {
+ chan->busy = false;
+ chan->status = DMA_COMPLETE;
+ dev_warn(chan2dev(chan), "Work already queued\n");
+ }
+ } else {
+ chan->busy = false;
+ chan->status = DMA_COMPLETE;
+ dev_err(chan2dev(chan), "MDMA transfer error: %d\n", result->result);
+ }
+}
+
+static int stm32_dma_mdma_start(struct stm32_dma_chan *chan, struct stm32_dma_sg_req *sg_req)
+{
+ struct stm32_dma_mdma *mchan = &chan->mchan;
+ struct stm32_dma_mdma_desc *m_desc = &sg_req->m_desc;
+ int ret;
+
+ ret = dma_submit_error(dmaengine_submit(m_desc->desc));
+ if (ret < 0) {
+ dev_err(chan2dev(chan), "MDMA submit failed\n");
+ goto error;
+ }
+
+ dma_async_issue_pending(mchan->chan);
+
+ /*
+ * In case of M2D transfer, we have to generate dummy DMA transfer to
+ * copy 1st sg data into SRAM
+ */
+ if (mchan->dir == DMA_MEM_TO_DEV) {
+ ret = stm32_dma_dummy_memcpy_xfer(chan);
+ if (ret < 0) {
+ dmaengine_terminate_async(mchan->chan);
+ goto error;
+ }
+ }
+
+ return 0;
+error:
+ return ret;
+}
+
+static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
+{
+ chan->next_sg++;
+ if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
+ chan->next_sg = 0;
+}
+
static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
@@ -558,6 +925,8 @@ static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
chan->desc = to_stm32_dma_desc(vdesc);
chan->next_sg = 0;
+ } else {
+ vdesc = &chan->desc->vdesc;
}
if (chan->next_sg == chan->desc->num_sgs)
@@ -566,6 +935,53 @@ static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
sg_req = &chan->desc->sg_req[chan->next_sg];
reg = &sg_req->chan_reg;
+ /* Clear interrupt status if it is there */
+ status = stm32_dma_irq_status(chan);
+ if (status)
+ stm32_dma_irq_clear(chan, status);
+
+ if (chan->use_mdma) {
+ if (chan->next_sg == 0) {
+ struct stm32_dma_mdma_desc *m_desc;
+
+ m_desc = &sg_req->m_desc;
+ if (chan->desc->cyclic) {
+ /* If one callback is set, it will be called by MDMA driver. */
+ if (vdesc->tx.callback) {
+ m_desc->desc->callback = vdesc->tx.callback;
+ m_desc->desc->callback_param = vdesc->tx.callback_param;
+ vdesc->tx.callback = NULL;
+ vdesc->tx.callback_param = NULL;
+ }
+ }
+ }
+
+ if (chan->mchan.dir == DMA_MEM_TO_DEV) {
+ ret = stm32_dma_dummy_memcpy_xfer(chan);
+ if (ret < 0) {
+ dmaengine_terminate_async(chan->mchan.chan);
+ chan->desc = NULL;
+ return;
+ }
+ } else {
+ reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
+ }
+
+ if (!chan->desc->cyclic) {
+ /* MDMA already started */
+ if (chan->mchan.dir != DMA_MEM_TO_DEV &&
+ sg_dma_len(&sg_req->stm32_sgl_req) > chan->mchan.sram_period)
+ reg->dma_scr |= STM32_DMA_SCR_DBM;
+ ret = stm32_dma_mdma_start(chan, sg_req);
+ if (ret < 0) {
+ chan->desc = NULL;
+ return;
+ }
+ }
+ }
+
+ stm32_dma_sg_inc(chan);
+
reg->dma_scr &= ~STM32_DMA_SCR_EN;
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
@@ -574,24 +990,17 @@ static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
- chan->next_sg++;
-
- /* Clear interrupt status if it is there */
- status = stm32_dma_irq_status(chan);
- if (status)
- stm32_dma_irq_clear(chan, status);
-
if (chan->desc->cyclic)
stm32_dma_configure_next_sg(chan);
stm32_dma_dump_reg(chan);
/* Start DMA */
+ chan->busy = true;
+ chan->status = DMA_IN_PROGRESS;
reg->dma_scr |= STM32_DMA_SCR_EN;
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
- chan->busy = true;
-
dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
}
@@ -604,41 +1013,137 @@ static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
id = chan->id;
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
- if (dma_scr & STM32_DMA_SCR_DBM) {
- if (chan->next_sg == chan->desc->num_sgs)
- chan->next_sg = 0;
+ sg_req = &chan->desc->sg_req[chan->next_sg];
- sg_req = &chan->desc->sg_req[chan->next_sg];
+ if (dma_scr & STM32_DMA_SCR_CT) {
+ dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
+ stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
+ dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
+ stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
+ } else {
+ dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
+ stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
+ dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
+ stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
+ }
+}
- if (dma_scr & STM32_DMA_SCR_CT) {
- dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
- stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
- dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
- stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
- } else {
- dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
- stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
- dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
- stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
- }
+static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ u32 dma_scr;
+
+ /*
+ * Read and store current remaining data items and peripheral/memory addresses to be
+ * updated on resume
+ */
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
+ /*
+ * Transfer can be paused while between a previous resume and reconfiguration on transfer
+ * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
+ * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
+ */
+ if (chan->desc && chan->desc->cyclic) {
+ if (chan->desc->num_sgs == 1)
+ dma_scr |= STM32_DMA_SCR_CIRC;
+ else
+ dma_scr |= STM32_DMA_SCR_DBM;
+ }
+ chan->chan_reg.dma_scr = dma_scr;
+
+ /*
+ * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
+ * on resume NDTR autoreload value will be wrong (lower than the initial period length)
+ */
+ if (chan->desc && chan->desc->cyclic) {
+ dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
}
+
+ chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
+
+ chan->status = DMA_PAUSED;
+
+ dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
}
-static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
+static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
{
- if (chan->desc) {
- if (chan->desc->cyclic) {
- vchan_cyclic_callback(&chan->desc->vdesc);
- chan->next_sg++;
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct stm32_dma_sg_req *sg_req;
+ u32 dma_scr, status, id;
+
+ id = chan->id;
+ dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
+
+ /* Clear interrupt status if it is there */
+ status = stm32_dma_irq_status(chan);
+ if (status)
+ stm32_dma_irq_clear(chan, status);
+
+ if (!chan->next_sg)
+ sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
+ else
+ sg_req = &chan->desc->sg_req[chan->next_sg - 1];
+
+ /* Reconfigure NDTR with the initial value */
+ stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
+
+ /* Restore SPAR */
+ stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
+
+ /* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
+ stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
+ stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
+
+ /* Reactivate CIRC/DBM if needed */
+ if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
+ dma_scr |= STM32_DMA_SCR_DBM;
+ /* Restore CT */
+ if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
+ dma_scr &= ~STM32_DMA_SCR_CT;
+ else
+ dma_scr |= STM32_DMA_SCR_CT;
+ } else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
+ dma_scr |= STM32_DMA_SCR_CIRC;
+ }
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
+
+ stm32_dma_configure_next_sg(chan);
+
+ stm32_dma_dump_reg(chan);
+
+ dma_scr |= STM32_DMA_SCR_EN;
+ stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
+
+ dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
+}
+
+static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
+{
+ if (!chan->desc)
+ return;
+
+ if (chan->desc->cyclic) {
+ vchan_cyclic_callback(&chan->desc->vdesc);
+ if (chan->use_mdma)
+ return;
+ stm32_dma_sg_inc(chan);
+ /* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
+ if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
+ stm32_dma_post_resume_reconfigure(chan);
+ else if (scr & STM32_DMA_SCR_DBM)
stm32_dma_configure_next_sg(chan);
- } else {
- chan->busy = false;
- if (chan->next_sg == chan->desc->num_sgs) {
- vchan_cookie_complete(&chan->desc->vdesc);
- chan->desc = NULL;
- }
- stm32_dma_start_transfer(chan);
+ } else {
+ if (chan->use_mdma && chan->mchan.dir != DMA_MEM_TO_DEV)
+ return; /* wait for callback */
+ chan->busy = false;
+ chan->status = DMA_COMPLETE;
+ if (chan->next_sg == chan->desc->num_sgs) {
+ vchan_cookie_complete(&chan->desc->vdesc);
+ chan->desc = NULL;
}
+ stm32_dma_start_transfer(chan);
}
}
@@ -674,8 +1179,10 @@ static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
if (status & STM32_DMA_TCI) {
stm32_dma_irq_clear(chan, STM32_DMA_TCI);
- if (scr & STM32_DMA_SCR_TCIE)
- stm32_dma_handle_chan_done(chan);
+ if (scr & STM32_DMA_SCR_TCIE) {
+ if (chan->status != DMA_PAUSED)
+ stm32_dma_handle_chan_done(chan, scr);
+ }
status &= ~STM32_DMA_TCI;
}
@@ -701,19 +1208,122 @@ static void stm32_dma_issue_pending(struct dma_chan *c)
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
unsigned long flags;
- spin_lock_irqsave(&chan->vchan.lock, flags);
+ if (chan->use_mdma)
+ spin_lock_irqsave_nested(&chan->vchan.lock, flags, SINGLE_DEPTH_NESTING);
+ else
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+
if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
stm32_dma_start_transfer(chan);
-
}
+
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
+static int stm32_dma_pause(struct dma_chan *c)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ unsigned long flags;
+ int ret;
+
+ if (chan->status != DMA_IN_PROGRESS || chan->use_mdma)
+ return -EPERM;
+
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+
+ ret = stm32_dma_disable_chan(chan);
+ if (!ret)
+ stm32_dma_handle_chan_paused(chan);
+
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+
+ return ret;
+}
+
+static int stm32_dma_resume(struct dma_chan *c)
+{
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
+ u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
+ struct stm32_dma_sg_req *sg_req;
+ unsigned long flags;
+
+ if (chan->status != DMA_PAUSED || chan->use_mdma)
+ return -EPERM;
+
+ scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
+ if (WARN_ON(scr & STM32_DMA_SCR_EN))
+ return -EPERM;
+
+ spin_lock_irqsave(&chan->vchan.lock, flags);
+
+ /* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
+ if (!chan->next_sg)
+ sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
+ else
+ sg_req = &chan->desc->sg_req[chan->next_sg - 1];
+
+ ndtr = sg_req->chan_reg.dma_sndtr;
+ offset = (ndtr - chan_reg.dma_sndtr) << STM32_DMA_SCR_PSIZE_GET(chan_reg.dma_scr);
+ spar = sg_req->chan_reg.dma_spar;
+ sm0ar = sg_req->chan_reg.dma_sm0ar;
+ sm1ar = sg_req->chan_reg.dma_sm1ar;
+
+ /*
+ * The peripheral and/or memory addresses have to be updated in order to adjust the
+ * address pointers. Need to check increment.
+ */
+ if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
+ stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
+ else
+ stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
+
+ if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
+ offset = 0;
+
+ /*
+ * In case of DBM, the current target could be SM1AR.
+ * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
+ * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
+ */
+ if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
+ stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
+ else
+ stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
+
+ /* NDTR must be restored otherwise internal HW counter won't be correctly reset */
+ stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
+
+ /*
+ * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
+ * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
+ */
+ if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
+ chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
+
+ if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
+ stm32_dma_configure_next_sg(chan);
+
+ stm32_dma_dump_reg(chan);
+
+ /* The stream may then be re-enabled to restart transfer from the point it was stopped */
+ chan->status = DMA_IN_PROGRESS;
+ chan_reg.dma_scr |= STM32_DMA_SCR_EN;
+ stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
+
+ spin_unlock_irqrestore(&chan->vchan.lock, flags);
+
+ dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
+
+ return 0;
+}
+
static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
enum dma_transfer_direction direction,
enum dma_slave_buswidth *buswidth,
- u32 buf_len, dma_addr_t buf_addr)
+ u32 buf_len, u64 buf_addr)
{
enum dma_slave_buswidth src_addr_width, dst_addr_width;
int src_bus_width, dst_bus_width;
@@ -862,6 +1472,151 @@ static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
}
+static int stm32_dma_mdma_prep_slave_sg(struct stm32_dma_chan *chan,
+ struct scatterlist *sgl, u32 sg_len,
+ struct stm32_dma_desc *desc, unsigned long flags)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct stm32_dma_mdma *mchan = &chan->mchan;
+ struct scatterlist *sg, *m_sg;
+ dma_addr_t dma_buf;
+ u32 len, num_sgs, sram_period;
+ int i, j, ret;
+
+ desc->dma_buf_cpu = gen_pool_dma_alloc(dmadev->sram_pool, chan->sram_size, &desc->dma_buf);
+ if (!desc->dma_buf_cpu)
+ return -ENOMEM;
+ desc->dma_buf_size = chan->sram_size;
+
+ sram_period = chan->sram_size / 2;
+
+ for_each_sg(sgl, sg, sg_len, i) {
+ struct stm32_dma_mdma_desc *m_desc = &desc->sg_req[i].m_desc;
+ struct dma_slave_config config;
+
+ len = sg_dma_len(sg);
+ desc->sg_req[i].stm32_sgl_req = *sg;
+ num_sgs = 1;
+
+ if (mchan->dir == DMA_MEM_TO_DEV) {
+ if (len > chan->sram_size) {
+ dev_err(chan2dev(chan),
+ "max buf size = %d bytes\n", chan->sram_size);
+ ret = -EINVAL;
+ goto free_alloc;
+ }
+ } else {
+ /*
+ * Build new sg for MDMA transfer
+ * Scatter DMA Req into several SDRAM transfer
+ */
+ if (len > sram_period)
+ num_sgs = len / sram_period;
+ }
+
+ ret = sg_alloc_table(&m_desc->sgt, num_sgs, GFP_ATOMIC);
+ if (ret) {
+ dev_err(chan2dev(chan), "MDMA sg table alloc failed\n");
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ dma_buf = sg_dma_address(sg);
+ for_each_sg(m_desc->sgt.sgl, m_sg, num_sgs, j) {
+ size_t bytes = min_t(size_t, len, sram_period);
+
+ sg_dma_address(m_sg) = dma_buf;
+ sg_dma_len(m_sg) = bytes;
+ dma_buf += bytes;
+ len -= bytes;
+ }
+
+ /* Configure MDMA channel */
+ memset(&config, 0, sizeof(config));
+ if (mchan->dir == DMA_MEM_TO_DEV)
+ config.dst_addr = desc->dma_buf;
+ else
+ config.src_addr = desc->dma_buf;
+
+ ret = dmaengine_slave_config(mchan->chan, &config);
+ if (ret < 0)
+ goto err;
+
+ /* Prepare MDMA descriptor */
+ m_desc->desc = dmaengine_prep_slave_sg(mchan->chan,
+ m_desc->sgt.sgl, m_desc->sgt.nents,
+ mchan->dir, DMA_PREP_INTERRUPT);
+
+ if (!m_desc->desc) {
+ ret = -EINVAL;
+ goto err;
+ }
+
+ if (flags & DMA_CTRL_REUSE)
+ dmaengine_desc_set_reuse(m_desc->desc);
+
+ if (mchan->dir != DMA_MEM_TO_DEV) {
+ m_desc->desc->callback_result = stm32_mdma_chan_complete;
+ m_desc->desc->callback_param = chan;
+ INIT_WORK(&chan->mdma_work, stm32_mdma_chan_complete_worker);
+ }
+ }
+
+ chan->mchan.sram_buf = desc->dma_buf;
+ chan->mchan.sram_period = sram_period;
+
+ return 0;
+
+err:
+ for (j = 0; j < i; j++) {
+ struct stm32_dma_mdma_desc *m_desc = &desc->sg_req[j].m_desc;
+
+ m_desc->desc = NULL;
+ sg_free_table(&desc->sg_req[j].m_desc.sgt);
+ }
+free_alloc:
+ gen_pool_free(dmadev->sram_pool, (unsigned long)desc->dma_buf_cpu, desc->dma_buf_size);
+ return ret;
+}
+
+static int stm32_dma_setup_sg_requests(struct stm32_dma_chan *chan,
+ struct scatterlist *sgl, unsigned int sg_len,
+ enum dma_transfer_direction direction,
+ struct stm32_dma_desc *desc)
+{
+ struct scatterlist *sg;
+ u32 nb_data_items;
+ int i, ret;
+ enum dma_slave_buswidth buswidth;
+
+ for_each_sg(sgl, sg, sg_len, i) {
+ ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, sg_dma_len(sg),
+ (u64)sg_dma_address(sg));
+ if (ret < 0)
+ return ret;
+
+ nb_data_items = sg_dma_len(sg) / buswidth;
+ if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
+ dev_err(chan2dev(chan), "nb items not supported\n");
+ return -EINVAL;
+ }
+
+ stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
+ desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
+ desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
+ desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
+ desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
+ desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
+ if (chan->use_mdma)
+ desc->sg_req[i].chan_reg.dma_sm1ar += chan->mchan.sram_period;
+ desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
+ }
+
+ desc->num_sgs = sg_len;
+
+ return 0;
+}
+
static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
struct dma_chan *c, struct scatterlist *sgl,
u32 sg_len, enum dma_transfer_direction direction,
@@ -869,9 +1624,6 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
{
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
struct stm32_dma_desc *desc;
- struct scatterlist *sg;
- enum dma_slave_buswidth buswidth;
- u32 nb_data_items;
int i, ret;
if (!chan->config_init) {
@@ -894,49 +1646,130 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
else
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
- for_each_sg(sgl, sg, sg_len, i) {
- ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
- sg_dma_len(sg),
- sg_dma_address(sg));
+ if (chan->use_mdma) {
+ struct sg_table new_sgt;
+ struct scatterlist *s, *_sgl;
+
+ chan->mchan.dir = direction;
+ ret = stm32_dma_mdma_prep_slave_sg(chan, sgl, sg_len, desc, flags);
if (ret < 0)
- goto err;
+ return NULL;
- desc->sg_req[i].len = sg_dma_len(sg);
+ ret = sg_alloc_table(&new_sgt, sg_len, GFP_ATOMIC);
+ if (ret)
+ dev_err(chan2dev(chan), "DMA sg table alloc failed\n");
- nb_data_items = desc->sg_req[i].len / buswidth;
- if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
- dev_err(chan2dev(chan), "nb items not supported\n");
- goto err;
+ for_each_sg(new_sgt.sgl, s, sg_len, i) {
+ _sgl = sgl;
+ sg_dma_len(s) = min(sg_dma_len(_sgl), chan->mchan.sram_period);
+ s->dma_address = chan->mchan.sram_buf;
+ _sgl = sg_next(_sgl);
}
- stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
- desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
- desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
- desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
- desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
- desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
- desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
+ ret = stm32_dma_setup_sg_requests(chan, new_sgt.sgl, sg_len, direction, desc);
+ sg_free_table(&new_sgt);
+ if (ret < 0)
+ goto err;
+ } else {
+ /* Prepare a normal DMA transfer */
+ ret = stm32_dma_setup_sg_requests(chan, sgl, sg_len, direction, desc);
+ if (ret < 0)
+ goto err;
}
- desc->num_sgs = sg_len;
desc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
-
err:
+ if (chan->use_mdma) {
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+
+ for (i = 0; i < sg_len; i++)
+ sg_free_table(&desc->sg_req[i].m_desc.sgt);
+
+ gen_pool_free(dmadev->sram_pool, (unsigned long)desc->dma_buf_cpu,
+ desc->dma_buf_size);
+ }
kfree(desc);
return NULL;
}
+static int stm32_dma_mdma_prep_dma_cyclic(struct stm32_dma_chan *chan,
+ dma_addr_t buf_addr, size_t buf_len,
+ size_t period_len, struct stm32_dma_desc *desc)
+{
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ struct stm32_dma_mdma *mchan = &chan->mchan;
+ struct stm32_dma_mdma_desc *m_desc = &desc->sg_req[0].m_desc;
+ struct dma_slave_config config;
+ int ret;
+
+ chan->sram_size = ALIGN(period_len, STM32_DMA_SRAM_GRANULARITY);
+ desc->dma_buf_cpu = gen_pool_dma_alloc(dmadev->sram_pool, 2 * chan->sram_size,
+ &desc->dma_buf);
+ if (!desc->dma_buf_cpu)
+ return -ENOMEM;
+ desc->dma_buf_size = 2 * chan->sram_size;
+
+ memset(&config, 0, sizeof(config));
+
+ /* Configure MDMA channel */
+ if (chan->mchan.dir == DMA_MEM_TO_DEV)
+ config.dst_addr = desc->dma_buf;
+ else
+ config.src_addr = desc->dma_buf;
+ ret = dmaengine_slave_config(mchan->chan, &config);
+ if (ret < 0)
+ goto err;
+
+ /* Prepare MDMA descriptor */
+ m_desc->desc = dmaengine_prep_dma_cyclic(mchan->chan, buf_addr, buf_len,
+ period_len, chan->mchan.dir,
+ DMA_PREP_INTERRUPT);
+
+ if (!m_desc->desc) {
+ ret = -EINVAL;
+ goto err;
+ }
+
+ ret = dma_submit_error(dmaengine_submit(m_desc->desc));
+ if (ret < 0) {
+ dev_err(chan2dev(chan), "MDMA submit failed\n");
+ goto err;
+ }
+
+ dma_async_issue_pending(mchan->chan);
+
+ /*
+ * In case of M2D transfer, we have to generate dummy DMA transfer to
+ * copy 1 period of data into SRAM
+ */
+ if (chan->mchan.dir == DMA_MEM_TO_DEV) {
+ ret = stm32_dma_dummy_memcpy_xfer(chan);
+ if (ret < 0) {
+ dev_err(chan2dev(chan), "stm32_dma_dummy_memcpy_xfer failed\n");
+ dmaengine_terminate_async(mchan->chan);
+ goto err;
+ }
+ }
+
+ return 0;
+err:
+ gen_pool_free(dmadev->sram_pool, (unsigned long)desc->dma_buf_cpu, desc->dma_buf_size);
+ return ret;
+}
+
static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_chan_reg *chan_reg = &chan->chan_reg;
struct stm32_dma_desc *desc;
enum dma_slave_buswidth buswidth;
u32 num_periods, nb_data_items;
+ dma_addr_t dma_buf = 0;
int i, ret;
if (!buf_len || !period_len) {
@@ -965,8 +1798,7 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
return NULL;
}
- ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
- buf_addr);
+ ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len, (u64)buf_addr);
if (ret < 0)
return NULL;
@@ -977,36 +1809,57 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
}
/* Enable Circular mode or double buffer mode */
- if (buf_len == period_len)
+ if (buf_len == period_len) {
chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
- else
+ } else {
chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
+ chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
+ }
/* Clear periph ctrl if client set it */
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
- num_periods = buf_len / period_len;
+ if (chan->use_mdma)
+ num_periods = 1;
+ else
+ num_periods = buf_len / period_len;
desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
if (!desc)
return NULL;
- for (i = 0; i < num_periods; i++) {
- desc->sg_req[i].len = period_len;
+ desc->num_sgs = num_periods;
+ desc->cyclic = true;
+
+ if (chan->use_mdma) {
+ chan->mchan.dir = direction;
+ ret = stm32_dma_mdma_prep_dma_cyclic(chan, buf_addr, buf_len, period_len, desc);
+ if (ret < 0)
+ return NULL;
+ dma_buf = desc->dma_buf;
+ } else {
+ dma_buf = buf_addr;
+ }
+
+ for (i = 0; i < num_periods; i++) {
+ sg_dma_len(&desc->sg_req[i].stm32_sgl_req) = period_len;
+ sg_dma_address(&desc->sg_req[i].stm32_sgl_req) = dma_buf;
stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
- desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
- desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
- desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
- desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
- desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
+ desc->sg_req[i].chan_reg.dma_scr = chan_reg->dma_scr;
+ desc->sg_req[i].chan_reg.dma_sfcr = chan_reg->dma_sfcr;
+ desc->sg_req[i].chan_reg.dma_spar = chan_reg->dma_spar;
+ if (chan->use_mdma) {
+ desc->sg_req[i].chan_reg.dma_sm0ar = desc->dma_buf;
+ desc->sg_req[i].chan_reg.dma_sm1ar = desc->dma_buf + chan->sram_size;
+ } else {
+ desc->sg_req[i].chan_reg.dma_sm0ar = dma_buf;
+ desc->sg_req[i].chan_reg.dma_sm1ar = dma_buf;
+ dma_buf += period_len;
+ }
desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
- buf_addr += period_len;
}
- desc->num_sgs = num_periods;
- desc->cyclic = true;
-
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
@@ -1047,13 +1900,13 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
STM32_DMA_SCR_PINC |
STM32_DMA_SCR_TCIE |
STM32_DMA_SCR_TEIE;
- desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
+ desc->sg_req[i].chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
desc->sg_req[i].chan_reg.dma_sfcr |=
STM32_DMA_SFCR_FTH(threshold);
desc->sg_req[i].chan_reg.dma_spar = src + offset;
desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
- desc->sg_req[i].len = xfer_count;
+ sg_dma_len(&desc->sg_req[i].stm32_sgl_req) = xfer_count;
}
desc->num_sgs = num_sgs;
@@ -1062,18 +1915,6 @@ static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
-static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
-{
- u32 dma_scr, width, ndtr;
- struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
-
- dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
- width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
- ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
-
- return ndtr << width;
-}
-
/**
* stm32_dma_is_current_sg - check that expected sg_req is currently transferred
* @chan: dma channel
@@ -1090,24 +1931,36 @@ static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
{
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
struct stm32_dma_sg_req *sg_req;
- u32 dma_scr, dma_smar, id;
+ u32 dma_scr, dma_smar, id, period_len;
id = chan->id;
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
+ /* In cyclic CIRC but not DBM, CT is not used */
if (!(dma_scr & STM32_DMA_SCR_DBM))
return true;
sg_req = &chan->desc->sg_req[chan->next_sg];
+ period_len = sg_dma_len(&sg_req->stm32_sgl_req);
+ /* DBM - take care of a previous pause/resume not yet post reconfigured */
if (dma_scr & STM32_DMA_SCR_CT) {
dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
- return (dma_smar == sg_req->chan_reg.dma_sm0ar);
+ /*
+ * If transfer has been pause/resumed,
+ * SM0AR is in the range of [SM0AR:SM0AR+period_len]
+ */
+ return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
+ dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
}
dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
-
- return (dma_smar == sg_req->chan_reg.dma_sm1ar);
+ /*
+ * If transfer has been pause/resumed,
+ * SM1AR is in the range of [SM1AR:SM1AR+period_len]
+ */
+ return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
+ dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
}
static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
@@ -1120,6 +1973,10 @@ static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
int i;
+ /* Drain case */
+ if (chan->residue_after_drain)
+ return chan->residue_after_drain;
+
/*
* Calculate the residue means compute the descriptors
* information:
@@ -1147,11 +2004,11 @@ static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
residue = stm32_dma_get_remaining_bytes(chan);
- if (!stm32_dma_is_current_sg(chan)) {
+ if (chan->desc->cyclic && !stm32_dma_is_current_sg(chan)) {
n_sg++;
if (n_sg == chan->desc->num_sgs)
n_sg = 0;
- residue = sg_req->len;
+ residue = sg_dma_len(&sg_req->stm32_sgl_req);
}
/*
@@ -1163,7 +2020,7 @@ static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
*/
if (!chan->desc->cyclic || n_sg != 0)
for (i = n_sg; i < desc->num_sgs; i++)
- residue += desc->sg_req[i].len;
+ residue += sg_dma_len(&desc->sg_req[i].stm32_sgl_req);
if (!chan->mem_burst)
return residue;
@@ -1181,13 +2038,29 @@ static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
struct dma_tx_state *state)
{
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
+ struct stm32_dma_mdma *mchan = &chan->mchan;
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
u32 residue = 0;
+ /*
+ * When DMA/MDMA chain is used, we return the status of MDMA in cyclic
+ * mode and for D2M transfer in sg mode in order to return the correct
+ * residue if any
+ */
+ if (chan->desc && chan->use_mdma &&
+ (mchan->dir != DMA_MEM_TO_DEV || chan->desc->cyclic) &&
+ !chan->residue_after_drain)
+ return dmaengine_tx_status(mchan->chan, mchan->chan->cookie, state);
+
status = dma_cookie_status(c, cookie, state);
- if (status == DMA_COMPLETE || !state)
+ if (status == DMA_COMPLETE)
+ return status;
+
+ status = chan->status;
+
+ if (!state)
return status;
spin_lock_irqsave(&chan->vchan.lock, flags);
@@ -1244,29 +2117,50 @@ static void stm32_dma_free_chan_resources(struct dma_chan *c)
vchan_free_chan_resources(to_virt_chan(c));
stm32_dma_clear_reg(&chan->chan_reg);
chan->threshold = 0;
+ chan->use_mdma = false;
+ chan->sram_size = 0;
}
static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
{
- kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
+ struct stm32_dma_desc *desc = to_stm32_dma_desc(vdesc);
+ struct stm32_dma_chan *chan = to_stm32_dma_chan(vdesc->tx.chan);
+ struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
+ int i;
+
+ if (chan->use_mdma) {
+ struct stm32_dma_mdma_desc *m_desc;
+
+ for (i = 0; i < desc->num_sgs; i++) {
+ m_desc = &desc->sg_req[i].m_desc;
+ if (dmaengine_desc_test_reuse(&vdesc->tx))
+ dmaengine_desc_free(m_desc->desc);
+ m_desc->desc = NULL;
+ sg_free_table(&m_desc->sgt);
+ }
+
+ gen_pool_free(dmadev->sram_pool, (unsigned long)desc->dma_buf_cpu,
+ desc->dma_buf_size);
+ }
+
+ kfree(desc);
}
static void stm32_dma_set_config(struct stm32_dma_chan *chan,
struct stm32_dma_cfg *cfg)
{
stm32_dma_clear_reg(&chan->chan_reg);
-
chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
-
- /* Enable Interrupts */
chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
-
chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
+ chan->use_mdma = STM32_DMA_MDMA_CHAIN_FTR_GET(cfg->features);
+ chan->sram_size = (1 << STM32_DMA_MDMA_SRAM_SIZE_GET(cfg->features)) *
+ STM32_DMA_SRAM_GRANULARITY;
}
static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
@@ -1304,6 +2198,9 @@ static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
stm32_dma_set_config(chan, &cfg);
+ if (!dmadev->sram_pool || !chan->mchan.chan)
+ chan->use_mdma = 0;
+
return c;
}
@@ -1316,11 +2213,13 @@ MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
static int stm32_dma_probe(struct platform_device *pdev)
{
struct stm32_dma_chan *chan;
+ struct stm32_dma_mdma *mchan;
struct stm32_dma_device *dmadev;
struct dma_device *dd;
const struct of_device_id *match;
struct resource *res;
struct reset_control *rst;
+ char name[4];
int i, ret;
match = of_match_device(stm32_dma_of_match, &pdev->dev);
@@ -1364,6 +2263,13 @@ static int stm32_dma_probe(struct platform_device *pdev)
reset_control_deassert(rst);
}
+ dmadev->sram_pool = of_gen_pool_get(pdev->dev.of_node, "sram", 0);
+ if (!dmadev->sram_pool)
+ dev_info(&pdev->dev, "no dma pool: can't use MDMA: %d\n", ret);
+ else
+ dev_dbg(&pdev->dev,
+ "SRAM pool: %zu KiB\n", gen_pool_size(dmadev->sram_pool) / 1024);
+
dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
dma_cap_set(DMA_SLAVE, dd->cap_mask);
@@ -1375,7 +2281,10 @@ static int stm32_dma_probe(struct platform_device *pdev)
dd->device_issue_pending = stm32_dma_issue_pending;
dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
+ dd->device_caps = stm32_dma_slave_caps;
dd->device_config = stm32_dma_slave_config;
+ dd->device_pause = stm32_dma_pause;
+ dd->device_resume = stm32_dma_resume;
dd->device_terminate_all = stm32_dma_terminate_all;
dd->device_synchronize = stm32_dma_synchronize;
dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
@@ -1403,11 +2312,39 @@ static int stm32_dma_probe(struct platform_device *pdev)
chan->id = i;
chan->vchan.desc_free = stm32_dma_desc_free;
vchan_init(&chan->vchan, dd);
+
+ mchan = &chan->mchan;
+ if (dmadev->sram_pool) {
+ snprintf(name, sizeof(name), "ch%d", chan->id);
+ mchan->chan = dma_request_chan(dd->dev, name);
+ if (IS_ERR(mchan->chan)) {
+ ret = PTR_ERR(mchan->chan);
+ mchan->chan = NULL;
+ if (ret == -EPROBE_DEFER)
+ goto err_dma;
+
+ dev_info(&pdev->dev, "can't request MDMA chan for %s\n", name);
+ } else {
+ /*
+ * Allocate workqueue per channel in case of MDMA/DMA chaining, to
+ * avoid deadlock with MDMA callback stm32_mdma_chan_complete() when
+ * MDMA interrupt handler is executed in a thread (which is the
+ * case in Linux-RT kernel or if force_irqthreads is set).
+ */
+ chan->mdma_wq = alloc_ordered_workqueue("dma_work-%s", 0, name);
+ if (!chan->mdma_wq) {
+ dma_release_channel(mchan->chan);
+ mchan->chan = NULL;
+ dev_warn(&pdev->dev,
+ "can't alloc MDMA workqueue for %s\n", name);
+ }
+ }
+ }
}
ret = dma_async_device_register(dd);
if (ret)
- goto clk_free;
+ goto err_dma;
for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
chan = &dmadev->chan[i];
@@ -1448,6 +2385,10 @@ static int stm32_dma_probe(struct platform_device *pdev)
err_unregister:
dma_async_device_unregister(dd);
+err_dma:
+ for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++)
+ if (dmadev->chan[i].mchan.chan)
+ dma_release_channel(dmadev->chan[i].mchan.chan);
clk_free:
clk_disable_unprepare(dmadev->clk);
@@ -1480,7 +2421,7 @@ static int stm32_dma_runtime_resume(struct device *dev)
#endif
#ifdef CONFIG_PM_SLEEP
-static int stm32_dma_suspend(struct device *dev)
+static int stm32_dma_pm_suspend(struct device *dev)
{
struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
int id, ret, scr;
@@ -1504,14 +2445,14 @@ static int stm32_dma_suspend(struct device *dev)
return 0;
}
-static int stm32_dma_resume(struct device *dev)
+static int stm32_dma_pm_resume(struct device *dev)
{
return pm_runtime_force_resume(dev);
}
#endif
static const struct dev_pm_ops stm32_dma_pm_ops = {
- SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
+ SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
stm32_dma_runtime_resume, NULL)
};
@@ -1529,4 +2470,4 @@ static int __init stm32_dma_init(void)
{
return platform_driver_register(&stm32_dma_driver);
}
-subsys_initcall(stm32_dma_init);
+device_initcall(stm32_dma_init);
diff --git a/drivers/dma/stm32-dmamux.c b/drivers/dma/stm32-dmamux.c
index d5d55732adba..eee0c5aa5fb5 100644
--- a/drivers/dma/stm32-dmamux.c
+++ b/drivers/dma/stm32-dmamux.c
@@ -267,7 +267,7 @@ static int stm32_dmamux_probe(struct platform_device *pdev)
ret = PTR_ERR(rst);
if (ret == -EPROBE_DEFER)
goto err_clk;
- } else {
+ } else if (count > 1) { /* Don't reset if there is only one dma-master */
reset_control_assert(rst);
udelay(2);
reset_control_deassert(rst);
diff --git a/drivers/dma/stm32-mdma.c b/drivers/dma/stm32-mdma.c
index 21a7bdc88970..1335346635de 100644
--- a/drivers/dma/stm32-mdma.c
+++ b/drivers/dma/stm32-mdma.c
@@ -78,6 +78,7 @@
#define STM32_MDMA_CCR_WEX BIT(14)
#define STM32_MDMA_CCR_HEX BIT(13)
#define STM32_MDMA_CCR_BEX BIT(12)
+#define STM32_MDMA_CCR_SM BIT(8)
#define STM32_MDMA_CCR_PL_MASK GENMASK(7, 6)
#define STM32_MDMA_CCR_PL(n) STM32_MDMA_SET(n, \
STM32_MDMA_CCR_PL_MASK)
@@ -200,6 +201,8 @@
#define STM32_MDMA_MAX_BURST 128
#define STM32_MDMA_VERY_HIGH_PRIORITY 0x3
+#define STM32_DMA_SRAM_GRANULARITY PAGE_SIZE
+
enum stm32_mdma_trigger_mode {
STM32_MDMA_BUFFER,
STM32_MDMA_BLOCK,
@@ -226,6 +229,7 @@ struct stm32_mdma_chan_config {
u32 transfer_config;
u32 mask_addr;
u32 mask_data;
+ bool m2m_hw;
};
struct stm32_mdma_hwdesc {
@@ -251,6 +255,7 @@ struct stm32_mdma_desc {
u32 ccr;
bool cyclic;
u32 count;
+ enum dma_transfer_direction dir;
struct stm32_mdma_desc_node node[];
};
@@ -275,6 +280,7 @@ struct stm32_mdma_device {
u32 nr_channels;
u32 nr_requests;
u32 nr_ahb_addr_masks;
+ u32 chan_reserved;
struct stm32_mdma_chan chan[STM32_MDMA_MAX_CHANNELS];
u32 ahb_addr_masks[];
};
@@ -565,13 +571,24 @@ static int stm32_mdma_set_xfer_param(struct stm32_mdma_chan *chan,
dst_addr = chan->dma_config.dst_addr;
/* Set device data size */
+ if (chan_config->m2m_hw)
+ dst_addr_width = stm32_mdma_get_max_width(dst_addr, buf_len,
+ STM32_MDMA_MAX_BUF_LEN);
+
dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width);
if (dst_bus_width < 0)
return dst_bus_width;
ctcr &= ~STM32_MDMA_CTCR_DSIZE_MASK;
ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width);
+ if (chan_config->m2m_hw) {
+ ctcr &= ~STM32_MDMA_CTCR_DINCOS_MASK;
+ ctcr |= STM32_MDMA_CTCR_DINCOS(dst_bus_width);
+ }
/* Set device burst value */
+ if (chan_config->m2m_hw)
+ dst_maxburst = STM32_MDMA_MAX_BUF_LEN / dst_addr_width;
+
dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
dst_maxburst,
dst_addr_width);
@@ -614,13 +631,24 @@ static int stm32_mdma_set_xfer_param(struct stm32_mdma_chan *chan,
src_addr = chan->dma_config.src_addr;
/* Set device data size */
+ if (chan_config->m2m_hw)
+ src_addr_width = stm32_mdma_get_max_width(src_addr, buf_len,
+ STM32_MDMA_MAX_BUF_LEN);
+
src_bus_width = stm32_mdma_get_width(chan, src_addr_width);
if (src_bus_width < 0)
return src_bus_width;
ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK;
ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width);
+ if (chan_config->m2m_hw) {
+ ctcr &= ~STM32_MDMA_CTCR_SINCOS_MASK;
+ ctcr |= STM32_MDMA_CTCR_SINCOS(src_bus_width);
+ }
/* Set device burst value */
+ if (chan_config->m2m_hw)
+ src_maxburst = STM32_MDMA_MAX_BUF_LEN / src_addr_width;
+
src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
src_maxburst,
src_addr_width);
@@ -728,6 +756,7 @@ static int stm32_mdma_setup_xfer(struct stm32_mdma_chan *chan,
{
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
struct dma_slave_config *dma_config = &chan->dma_config;
+ struct stm32_mdma_chan_config *chan_config = &chan->chan_config;
struct scatterlist *sg;
dma_addr_t src_addr, dst_addr;
u32 ccr, ctcr, ctbr;
@@ -750,6 +779,8 @@ static int stm32_mdma_setup_xfer(struct stm32_mdma_chan *chan,
} else {
src_addr = dma_config->src_addr;
dst_addr = sg_dma_address(sg);
+ if (chan_config->m2m_hw)
+ src_addr += ((i & 1) ? sg_dma_len(sg) : 0);
ret = stm32_mdma_set_xfer_param(chan, direction, &ccr,
&ctcr, &ctbr, dst_addr,
sg_dma_len(sg));
@@ -768,8 +799,6 @@ static int stm32_mdma_setup_xfer(struct stm32_mdma_chan *chan,
/* Enable interrupts */
ccr &= ~STM32_MDMA_CCR_IRQ_MASK;
ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE;
- if (sg_len > 1)
- ccr |= STM32_MDMA_CCR_BTIE;
desc->ccr = ccr;
return 0;
@@ -781,7 +810,9 @@ stm32_mdma_prep_slave_sg(struct dma_chan *c, struct scatterlist *sgl,
unsigned long flags, void *context)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
+ struct stm32_mdma_chan_config *chan_config = &chan->chan_config;
struct stm32_mdma_desc *desc;
+ struct stm32_mdma_hwdesc *hwdesc;
int i, ret;
/*
@@ -803,6 +834,20 @@ stm32_mdma_prep_slave_sg(struct dma_chan *c, struct scatterlist *sgl,
if (ret < 0)
goto xfer_setup_err;
+ /*
+ * In case of M2M HW transfer triggered by STM32 DMA, we do not have to
+ * clear the transfer complete flag by hardware in order to let the
+ * CPU rearm the DMA with the next sg element and update some data in
+ * dmaengine framework
+ */
+ if (chan_config->m2m_hw && direction == DMA_MEM_TO_DEV) {
+ for (i = 0; i < sg_len; i++) {
+ hwdesc = desc->node[i].hwdesc;
+ hwdesc->cmar = 0;
+ hwdesc->cmdr = 0;
+ }
+ }
+
desc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
@@ -824,9 +869,10 @@ stm32_mdma_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr,
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
struct dma_slave_config *dma_config = &chan->dma_config;
+ struct stm32_mdma_chan_config *chan_config = &chan->chan_config;
struct stm32_mdma_desc *desc;
dma_addr_t src_addr, dst_addr;
- u32 ccr, ctcr, ctbr, count;
+ u32 ccr, ctcr, ctbr, count, offset;
int i, ret;
/*
@@ -880,12 +926,29 @@ stm32_mdma_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr,
desc->ccr = ccr;
/* Configure hwdesc list */
+ offset = ALIGN(period_len, STM32_DMA_SRAM_GRANULARITY);
for (i = 0; i < count; i++) {
if (direction == DMA_MEM_TO_DEV) {
+ /*
+ * When the DMA is configured in double buffer mode,
+ * the MDMA has to use 2 destination buffers to be
+ * compliant with this mode.
+ */
+ if (chan_config->m2m_hw && count > 1 && i % 2)
+ dst_addr = dma_config->dst_addr + offset;
+ else
+ dst_addr = dma_config->dst_addr;
src_addr = buf_addr + i * period_len;
- dst_addr = dma_config->dst_addr;
} else {
- src_addr = dma_config->src_addr;
+ /*
+ * When the DMA is configured in double buffer mode,
+ * the MDMA has to use 2 destination buffers to be
+ * compliant with this mode.
+ */
+ if (chan_config->m2m_hw && count > 1 && i % 2)
+ src_addr = dma_config->src_addr + offset;
+ else
+ src_addr = dma_config->src_addr;
dst_addr = buf_addr + i * period_len;
}
@@ -895,6 +958,7 @@ stm32_mdma_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr,
}
desc->cyclic = true;
+ desc->dir = direction;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
@@ -1279,14 +1343,28 @@ static size_t stm32_mdma_desc_residue(struct stm32_mdma_chan *chan,
{
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
struct stm32_mdma_hwdesc *hwdesc = desc->node[0].hwdesc;
- u32 cbndtr, residue, modulo, burst_size;
+ u32 residue = 0;
+ u32 modulo, burst_size;
+ dma_addr_t next_clar;
+ u32 cbndtr;
int i;
- residue = 0;
- for (i = curr_hwdesc + 1; i < desc->count; i++) {
+ /*
+ * Get the residue of pending descriptors
+ */
+ /* Get the next hw descriptor to process from current transfer */
+ next_clar = stm32_mdma_read(dmadev, STM32_MDMA_CLAR(chan->id));
+ for (i = desc->count - 1; i >= 0; i--) {
hwdesc = desc->node[i].hwdesc;
+
+ if (hwdesc->clar == next_clar)
+ break;/* Current transfer found, stop cumulating */
+
+ /* Cumulate residue of unprocessed hw descriptors */
residue += STM32_MDMA_CBNDTR_BNDT(hwdesc->cbndtr);
}
+
+ /* Read & cumulate the residue of the current transfer */
cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id));
residue += cbndtr & STM32_MDMA_CBNDTR_BNDT_MASK;
@@ -1306,24 +1384,36 @@ static enum dma_status stm32_mdma_tx_status(struct dma_chan *c,
struct dma_tx_state *state)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
+ struct stm32_mdma_chan_config *chan_config = &chan->chan_config;
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
u32 residue = 0;
status = dma_cookie_status(c, cookie, state);
- if ((status == DMA_COMPLETE) || (!state))
+ if (status == DMA_COMPLETE || !state)
return status;
spin_lock_irqsave(&chan->vchan.lock, flags);
vdesc = vchan_find_desc(&chan->vchan, cookie);
- if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
- residue = stm32_mdma_desc_residue(chan, chan->desc,
- chan->curr_hwdesc);
- else if (vdesc)
+ if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) {
+ /*
+ * In case of M2D transfer triggered by STM32 DMA, the MDMA has
+ * always one period in advance in cyclic mode. So, we have to
+ * add 1 period of data to return the good residue to the
+ * client
+ */
+ if (chan_config->m2m_hw &&
+ chan->desc->dir == DMA_MEM_TO_DEV && chan->curr_hwdesc > 1)
+ residue = stm32_mdma_desc_residue(chan, chan->desc, chan->curr_hwdesc - 1);
+ else
+ residue = stm32_mdma_desc_residue(chan, chan->desc, chan->curr_hwdesc);
+ } else if (vdesc) {
residue = stm32_mdma_desc_residue(chan,
to_stm32_mdma_desc(vdesc), 0);
+ }
+
dma_set_residue(state, residue);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
@@ -1371,9 +1461,12 @@ static irqreturn_t stm32_mdma_irq_handler(int irq, void *devid)
if (!(status & ien)) {
spin_unlock(&chan->vchan.lock);
- dev_warn(chan2dev(chan),
- "spurious it (status=0x%04x, ien=0x%04x)\n",
- status, ien);
+ if (chan->busy)
+ dev_warn(chan2dev(chan),
+ "spurious it (status=0x%04x, ien=0x%04x)\n", status, ien);
+ else
+ dev_dbg(chan2dev(chan),
+ "spurious it (status=0x%04x, ien=0x%04x)\n", status, ien);
return IRQ_NONE;
}
@@ -1473,15 +1566,28 @@ static void stm32_mdma_free_chan_resources(struct dma_chan *c)
chan->desc_pool = NULL;
}
+static bool stm32_mdma_filter_fn(struct dma_chan *c, void *fn_param)
+{
+ struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
+ struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
+
+ /* Check if chan is marked Secure */
+ if (dmadev->chan_reserved & BIT(chan->id))
+ return false;
+
+ return true;
+}
+
static struct dma_chan *stm32_mdma_of_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct stm32_mdma_device *dmadev = ofdma->of_dma_data;
+ dma_cap_mask_t mask = dmadev->ddev.cap_mask;
struct stm32_mdma_chan *chan;
struct dma_chan *c;
struct stm32_mdma_chan_config config;
- if (dma_spec->args_count < 5) {
+ if (dma_spec->args_count < 6) {
dev_err(mdma2dev(dmadev), "Bad number of args\n");
return NULL;
}
@@ -1491,6 +1597,7 @@ static struct dma_chan *stm32_mdma_of_xlate(struct of_phandle_args *dma_spec,
config.transfer_config = dma_spec->args[2];
config.mask_addr = dma_spec->args[3];
config.mask_data = dma_spec->args[4];
+ config.m2m_hw = dma_spec->args[5];
if (config.request >= dmadev->nr_requests) {
dev_err(mdma2dev(dmadev), "Bad request line\n");
@@ -1502,7 +1609,7 @@ static struct dma_chan *stm32_mdma_of_xlate(struct of_phandle_args *dma_spec,
return NULL;
}
- c = dma_get_any_slave_channel(&dmadev->ddev);
+ c = __dma_request_channel(&mask, stm32_mdma_filter_fn, &config, ofdma->of_node);
if (!c) {
dev_err(mdma2dev(dmadev), "No more channels available\n");
return NULL;
@@ -1631,6 +1738,10 @@ static int stm32_mdma_probe(struct platform_device *pdev)
for (i = 0; i < dmadev->nr_channels; i++) {
chan = &dmadev->chan[i];
chan->id = i;
+
+ if (stm32_mdma_read(dmadev, STM32_MDMA_CCR(i)) & STM32_MDMA_CCR_SM)
+ dmadev->chan_reserved |= BIT(i);
+
chan->vchan.desc_free = stm32_mdma_desc_free;
vchan_init(&chan->vchan, dd);
}
--
2.17.1